Difference between revisions of "project01:Frontpage"

From rbse
Jump to: navigation, search
(V. Silicone 3D Printing)
(V. Silicone 3D Printing)
Line 137: Line 137:
  
 
<b>Reference</b><br>
 
<b>Reference</b><br>
<a href="https://www.aceo3d.com/">ACEO&reg; 3D Printing</a><br>
+
<html><a href="https://www.aceo3d.com/">ACEO&reg; 3D Printing</a><br></html>
  
 
<!--3D Printing with Silicones: Impossible Products by ACEO-->
 
<!--3D Printing with Silicones: Impossible Products by ACEO-->

Revision as of 15:02, 10 March 2017


Benjamin Kemper

Running Out Of Gas On The Fast Lane

Repurpose of abandoned drilling rigs in the North Sea (in 20-50 years)

Eventually either the oil and gas supply will be exhausted, or society will develop methods to rely completely on eco-friendly energy sources. What will then happen to the oil industry and their factories and structures? In this hypothetical situation, offshore drilling rigs, structures made of billions of euros worth of steel and concrete, will need to be repurposed. These highly sophisticated platforms and jackets resist storms, frequent waves (resonance), and salt water. These abandoned rigs provide society with the opportunity to repurpose, and even extend the site over and under water.

Humans are facing the dangerous consequences of the climate change. Especially the population of the Netherlands, which has to face rising sea levels. An undesired, nor not impossible scenario, would be the loss of livable land due to flooding. The loss of building and living area would result in drastic changes to the means of life. On the one hand, we need to research possibilities to slow down the process, and also change our way of life. However, on the other hand, we must look for concepts and design proposals to support a lifestyle with radical climate changes.

Our society, human behavior, and cities are changing due to the exponential progress of technology. How are we going to live in a future, and which role will architecture play in an augmented world? It might emerge as a balancing act between utopia and dystopia, between the total dependency and repression of the machines and the freedom to achieve more than we ever imagined. Society’s addiction to technical devices emphasizes the urgency at hand to begin to work with new technologies instead of denying the process categorically.

Status Quo: http://rbse.hyperbody.nl/index.php/project01:P2


Soft Architecture Proposal

I. Prototype Fragment

II. Silicone Expertise

Traditional Silicone Casting
Bachelor thesis in cooperation with Luisa Roth @ Technical University of Cologne

Silicone Molds + Counter Plaster Forms:
06 IMG 0420.jpg 05 IMG 0388.jpg 03 IMG 0268.jpg 07 IMG 0423.jpg

Concrete Models:
08 IMG 2919.jpg 17 IMG 2848.jpg 13 IMG 2840.jpg 14 IMG 9694.jpg

Making Of:


Pneumatic Silicone
Swarmscape - MSc1 project in cooperation with Mindaugas Arlauskas, Olav van der Doorn, and Daniel Fischer @ hyperbody, TU Delft

Prototype:

Making Of:

III. Silicone

Company
Wacker Silicones

Recipe (Components)

SILICONE RUBBER (e.g. Elastosil® M 4512)

+

CATALYST A (e.g. Wacker® Catalyst T 51)

+

CATALYST B (e.g. Wacker® Catalyst T 47)

+

ADDITIVE (e.g. Wacker® Thixotropic Additive C)

IV. Architecture/Design References

IAAC - Soft Skin

Inflated Silicone Skin + Façade Section:
Iaac soft-skin 02.jpg Iaac soft-skin 01.jpg


Nameless Architecture - The Door

Silicone Door (Reinforced Epoxy Resin, Translucent Silicone Resin + Steel Wire):
AR1409 0595 new2.jpg Nameless-door-4902 new2.jpg The-Door-by-Nameless-Architecture dezeen 468 9.jpg

Product Video:


Harvard Bio Design Lab/Soft Robotics Toolkit - Cardiac Simulator

Artificial Silicone Heart + Muscles:
Cardsim1.png Cardsim2.png

A Bioinspired Soft Active Material and Cardiac Simulator:

V. Silicone 3D Printing

Reference
ACEO® 3D Printing


Proposal

VI. Combination Wood